4.7 Article

Enhancing hydrogen production from propane partial oxidation via CO preferential oxidation and CO2 sorption towards solid oxide fuel cell (SOFC) applications

期刊

RENEWABLE ENERGY
卷 156, 期 -, 页码 303-313

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.03.161

关键词

Hydrogen production; Sorption enhance; Partial oxidation of propane; CO Preferential oxidation; Solid oxide fuel cell

资金

  1. Natural Science Foundation of China [51606046]
  2. Project of Guangdong Talent Special Support Program [2017 T x 04 N371]
  3. International Science and Technology Cooperation base of Guangdong Province [2019A050505010]

向作者/读者索取更多资源

Under the demand of distributed power sources, solid oxide fuel cell (SOFC) has attracted considerable interest for its high efficiency. However, non-carbon neutral and CO poisoning limit the applications of SOFC when converting hydrocarbons to hydrogen-rich gas by thermally incorporating an external/internal processor. In this work, an external reformer and SOFC system is established to improve hydrogen production therefore enhancing power density by CO preferential oxidation and CO2 sorption-enhanced methods. The prepared CoxMgyCa(1-x-y)O-z sorbents are observed to provide porous structures, and Co0.110Mg0.204Ca0.686Oz presents the most uniform pore size distribution and the highest CO2 sorption capacity by lowering the CO2 sorption activation energy via kinetic analysis. By using the mixture of Ni/Al2O3-SiC catalyst and the synthesized CoxMgyCa(1-x-y)O-z sorbents, sorption-enhanced hydrogen production from propane partial oxidation is achieved for a higher hydrogen production and lower CO, CO2 productions. The produced hydrogen is served as a fuel of the proposed SOFC system, and a maximum output power density of 513 mW/cm(2) at 1.2 A/cm(2) is reached, which is equivalent to 160 mL/min of pure H-2. This work might offer a novel insight for developing low-cost processes towards indirect hydrogen production for fuel cells. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据