4.7 Article

Enzymatic hydrolysis of waste bread by newly isolated Hymenobacter sp. CKS3: Statistical optimization and bioethanol production

期刊

RENEWABLE ENERGY
卷 152, 期 -, 页码 627-633

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.01.101

关键词

Hymenobacter; Hydrolysis; Waste bread; Bioethanol; Statistical optimization

资金

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [TR 31035]

向作者/读者索取更多资源

Microbial hydrolytic enzymes are relevant biotechnological products that can be applied in various industries. In this study, we have tested the activity of hydrolytic enzymes of a newly isolated Hymenobacter sp. CKS3 strain and showed, for the first time, that members of Hymenobacter genus have still unexplored hydrolytic potential. Crude hydrolytic enzymes, produced by the strain CKS3 on a waste medium, were incorporated into a process of bioethanol production using waste bread. The conditions for bread hydrolysis were optimized using statistical design. Waste bread hydrolysate obtained under optimal conditions (100.73 h of hydrolysis, waste bread concentration 20.36% and agitation speed 200 rpm) contained 19.89 g/l of reducing sugars. A high performance liquid chromatography of hydrolyzed waste bread samples showed that the main components of the hydrolysate were dextrins, maltotriose, maltose and glucose. When using this substrate and waste baker's yeast for ethanol production under non-optimized conditions 1.73% of ethanol was produced. The results of this study showed that a newly isolated Hymenobacter sp. CKS3 can be utilized for enzymatic hydrolysis and bioethanol production in a process relying on waste materials. Furthermore, it was demonstrated that members of Hymenobacter genus have a significant and currently unexplored potential for bio-based industrial applications. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据