4.7 Review

Recent developments on anode materials for magnesium-ion batteries: a review

期刊

RARE METALS
卷 40, 期 2, 页码 290-308

出版社

NONFERROUS METALS SOC CHINA
DOI: 10.1007/s12598-020-01493-3

关键词

Magnesium-ion batteries; Energy storage systems; Anode materials; Metal oxides; Two-dimensional materials

资金

  1. Graduate Research and Innovation Foundation of Chongqing, China [CYS19034]
  2. Fundamental Research Funds for the Central Universities [2019CDJGFCL001]
  3. Science and Technology Research Program of Chongqing Municipal Education Commission [KJZD-K201800101]

向作者/读者索取更多资源

In recent years, research interest in the development of next-generation battery systems, particularly Magnesium-ion batteries (MIBs) as an alternative to lithium-ion batteries (LIBs), has been increasing. However, serious issues such as the formation of an irreversible passivation layer on the Mg anode surface need to be resolved in the development of rechargeable MIBs. Strategies including exploration of new electrolytes and alternative anode materials, as well as structural design, dimension reduction, and introduction of the second phase, have been employed to design high-performance MIB anodes.
In recent years, there has been significant growth in the demand for secondary batteries, and researchers are increasingly taking an interest in the development of next-generation battery systems. Magnesium-ion batteries (MIBs) have been recognized as the optimal alternative to lithium-ion batteries (LIBs) due to their low cost, superior safety, and environment-friendliness. However, research and development on rechargeable MIBs are still underway as some serious problems need to be resolved. One of the most serious obstacles is the generation of an irreversible passivation layer on the surface of the Mg anode during cycling. In addition to exploring new electrolytes for MIBs, alternative anode materials for MIBs might be an effective solution to this issue. In this review, the composition and working principle of MIBs have been discussed. In addition, recent advances in the area of anode materials (metals and their alloys, metal oxides, and two-dimensional materials) available for MIBs and the corresponding Mg-storage mechanisms have also been summarized. Further, feasible strategies, including structural design, dimension reduction, and introduction of the second phase, have been employed to design high-performance MIB anodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据