4.7 Article

Pressure control as an effective method to modulate aggregative growth of nanoparticles

期刊

RARE METALS
卷 40, 期 7, 页码 1808-1816

出版社

NONFERROUS METALS SOC CHINA
DOI: 10.1007/s12598-020-01484-4

关键词

Ag nanoparticles; Synthesis method; Pressure control; Size uniformity; High efficiency

资金

  1. Shanghai Pujiang Program [17PJD012]
  2. Science and Technology Commission of Shanghai Municipality [16ZR1407900]

向作者/读者索取更多资源

Recent studies have shown that manipulating the adsorption of oleylamine on nanoparticle surfaces can control particle interactions and enhance aggregative growth processes. This leads to faster nucleation rates and higher uniformity of nanoparticles in a shorter time period. Additionally, Ag nanoparticles supported on TiO(2) have demonstrated remarkable catalytic performance in the reduction of 4-nitrophenol.
Recent studies suggested that the interactions between particles can induce aggregative nucleation and growth processes beyond those predicted by the traditional LaMer model of nanoparticle formation, but their nucleation and growth processes are still unclear. Here, we report a simple way to control the interaction between nanoparticles by manipulating the oleylamine (OAm) adsorbed on the surface of the nanoparticles. The size distributions of Ag nanoparticles produced at different reaction pressures were monitored as evidence for aggregative growth. From these kinetic data, the aggregative nucleation rate (Gamma) of primary Ag nanoparticles under a 0.01 MPa was demonstrated to be faster than that under atmospheric pressure. This leads to a higher uniformity of Ag nanoparticles in a shorter time (10 min) than that achievable with previous methods. Furthermore, Ag nanoparticles supported on TiO(2)exhibited a remarkable performance in the catalytic reduction of 4-nitrophenol (4-NP). After 4 min, 4-NP was completely reduced into 4-aminophenol (4-AP).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据