4.7 Article

Insolation and greenhouse gases drove Holocene winter and spring warming in Arctic Alaska

期刊

QUATERNARY SCIENCE REVIEWS
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2020.106438

关键词

Continental biomarkers; Alkenone; Paleoclimatology; Paleolimnology; Temperature reconstruction; Proxy data-model comparison; Holocene; North America; Seasonality; Beringia

资金

  1. NSF [PLR-1503846, PLR-1504069, DEB-1637459]
  2. National Geographic Society Exploration Grant [9397e13]
  3. National Ocean Sciences Accelerator Mass Spectroscopy Internship
  4. Arctic Long Term Ecological Research program [DEB-1637459]

向作者/读者索取更多资源

Global surface temperature changes and their drivers during the Holocene Epoch remain controversial. Syntheses of proxy data indicate that global mean annual temperature declined from the mid-Holocene until the Pre-industrial Era, a trend linked to decreasing Northern Hemisphere summer insolation. In contrast, global climate models simulate increasing mean annual temperatures driven by retreating ice sheets and increasing greenhouse gas concentrations. This proxy-model disagreement may originate from a warm season bias in Northern Hemisphere proxy reconstructions, highlighting the need for new proxies that quantify cold season temperature, especially in Arctic regions that were devoid of continental ice sheets during the Holocene. Here, we present a new 16,000-year winter-spring temperature reconstruction derived from the unsaturation ratio of alkenones (U-3(7)K) in a continuous sedimentary sequence from Lake E5, northern Alaska. We employ a thermodynamic lake model to convert alkenone-inferred lake temperatures into winter-spring air temperature anomalies and we contextualize our proxy reconstruction with climate model output from the region. Our reconstruction shows that winter-spring temperatures warmed rapidly during the deglaciation at 16 and 14 thousand years before present and continued to warm gradually throughout the middle and late Holocene (0.12-0.28 degrees C/thousand years) in concert with regional sea surface temperature and sea ice records. Our results are consistent with climate model simulations and we attribute Holocene warming to rising winter-spring insolation, radiative forcing from rising greenhouse gas concentrations and regional feedbacks. Our reconstructed cold season warming equaled or exceeded summer cooling according to a regional synthesis of temperature records, suggesting that seasonal biases in temperature reconstructions may account for proxy-model disagreements in Holocene temperature trends from Eastern Beringia. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据