4.8 Article

Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2001989117

关键词

protein evolution; abiotic amino acids; prebiotic chemistry; protein synthesis; helix-hairpin-helix

资金

  1. Israel Science Foundation [980/14, 783/18]
  2. Israel Cancer Research Fund Acceleration Grant
  3. NIH [R35 GM126942]
  4. Kaete Klausner Fellowship
  5. Weizmann Institute of Science

向作者/读者索取更多资源

De novo emergence demands a transition from disordered polypeptides into structured proteins with well-defined functions. However, can poly-peptides confer functions of evolutionary relevance, and how might such polypeptides evolve into modern proteins? The earliest proteins present an even greater challenge, as they were likely based on abiotic, spontaneously synthesized amino acids. Here we asked whether a primordial function, such as nucleic acid binding, could emerge with ornithine, a basic amino acid that forms abiotically yet is absent in modern-day proteins. We combined ancestral sequence reconstruction and empiric deconstruction to unravel a gradual evolutionary trajectory leading from a polypeptide to a ubiquitous nucleic acid-binding protein. Intermediates along this trajectory comprise sequence-duplicated functional proteins built from 10 amino acid types, with ornithine as the only basic amino acid. Ornithine side chains were further modified into arginine by an abiotic chemical reaction, improving both structure and function. Along this trajectory, function evolved from phase separation with RNA (coacervates) to avid and specific double-stranded DNA binding. Our results suggest that phase-separating polypeptides may have been an evolutionary resource for the emergence of early proteins, and that ornithine, together with its postsynthesis modification to arginine, could have been the earliest basic amino acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据