4.7 Article

Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes

期刊

POULTRY SCIENCE
卷 99, 期 11, 页码 5827-5837

出版社

ELSEVIER
DOI: 10.1016/j.psj.2020.07.042

关键词

broiler; corn resistant starch; fat deposition; cecum; microbiota

资金

  1. National Key Research and Development Program of China [2017YFD0500505]
  2. Earmarked Fund for Jiangsu Agricultural Industry Technology System [JATS[2019] 425]
  3. Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents (2018)

向作者/读者索取更多资源

This study investigated the effects of dietary corn-resistant starch on lipid metabolism of broilers and its potential relationship with cecal microbiota modulation. A total of three hundred twenty 1-day-old male broilers were randomly assigned into 5 dietary treatments: 1 normal corn-soybean (NC) diet, 1 corn-soybean-based diet supplementation with 20% corn starch (CS), and 3 corn-soybean-based diets supplementation with 4, 8, and 12% corn resistant starch (RS) (identified as 4%RS, 8%RS, and 12%RS, respectively). Each group had 8 replicates with 8 broilers per replicate. The experiment lasted 21 d. The results showed that the abdominal fat percentage were lower in birds from 8%RS and 12%RS groups (0.75 and 0.58%, respectively) than those from NC and CS groups (1.20 and 1.28%, respectively; P < 0.05). The birds from 8%RS and 12%RS groups exhibited lower concentrations of blood triglyceride and nonestesterified fatty acid than those in the NC and CS groups (P < 0.05). Moreover, birds fed diets supplementation with 12% RS decreased the relative mRNA expressions of peroxisome proliferator-activated receptor gamma, ATP citratelyase, fatty acid synthase, and acetyl-CoA carboxylase in liver, and glycerol-3-phosphate acyltransferase in abdominal adipose tissue (P < 0.05). Microbiota analysis revealed that birds fed diets supplementation with 8 and 12% RS decreased the abundance of cecal Firmicutes by 23.08 and 20.47% and increased the proportion of Bacteroidetes by 24.33 and 21.92%, respectively, compared with the NC group (P < 0.05). In addition, correlation analysis revealed that many Firmicutes members had highly positive relationship with blood lipid levels and fat storage capacity, which might contribute to the lower abdominal fat phenotype. Overall, broilers receiving diets containing a higher concentration of RS harbor less Firmicutes, which decreased liver fatty acid synthesis and suppress abdominal fat deposition of birds during the starter phase. These findings provide a profound understanding about the relationship between gut microbial composition and lipid metabolism in broilers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据