4.7 Article

Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid

期刊

POLYMER TESTING
卷 87, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymertesting.2020.106557

关键词

Fused deposition modeling; Infill pattern; Thermoplastics; Low-velocity impact; Fractography

资金

  1. Digital Manufacturing Laboratory, Mechanical Engineering Department, Qassim Engineering College, Qassim University, Saudi Arabia

向作者/读者索取更多资源

This paper presents the effect of infill patterns (IPs) on the mechanical response of 3D printed specimens by conducting the low-velocity impact test (LVI) and compression test. The poly-lactic acid (PLA, purity 98 wt% >) material has selected and printed using fused deposition modeling (FDM, speed 20 mm/s, layer height 0.2 mm, no of layers 30, extruded at 200 degrees C) with four different IPs: triangle, grid, quarter cubic, and tri-hexagon. The LVI test on velocity-time, energy-time and force-displacement, and the compression responses have examined and presented in this study. The LVI test was carried out to determine the penetration energy level, energy absorption capacity (toughness), stiffness, and strength of PLA porous parts (60% infill density) for implant/tissue/recyclable product applications. The results have shown that the triangular pattern has produced the highest absorbed energy in LVI test (penetration energy 7.5 J, and stiffness 668.82 N/mm) due to more sheared/contact layers' perpendicular to impactor (hemispherical insert); while the grid pattern exhibited the highest compressive strength (72 MPa) due to more layers aligned along the compressive loading direction The SEM fracture surface image of Triangular IP has produced effective raster and layer bonding, less number of voids, more amount of circular beach markings, and absence of ratchet lines leading to possess improved mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据