4.7 Article

Litter stoichiometric traits have stronger impact on humification than environment conditions in an alpine treeline ecotone

期刊

PLANT AND SOIL
卷 453, 期 1-2, 页码 545-560

出版社

SPRINGER
DOI: 10.1007/s11104-020-04586-1

关键词

Litter humification; Stoichiometric traits; Plant functional groups; Vegetation types; Environmental conditions

资金

  1. National Natural Science Foundation of China [31570605]
  2. Key Project of Sichuan Education Department [18ZA0393]
  3. National Key Research and Development Plan [2017YFC0505003]
  4. Key Research and Development Project of Sichuan Province [18ZDYF0307]

向作者/读者索取更多资源

Aim Litter humification is vital for carbon sequestration in terrestrial ecosystems. Probing the litter humification of treeline ecotone will be helpful to understand soil carbon afflux in alpine regions under climate change. Methods Foliar litter of six plant functional groups was chosen in an alpine treeline ecotone of the eastern Tibetan Plateau, and a field litterbag decomposition experiment (669 days) was conducted in an alpine shrubland (AS) and a coniferous forest (CF). Environmental factors, litter quality, humus concentrations (total humus, Huc; humic acid, HAc; and fulvic acid, FAc) and hue coefficient (Delta logK and E4/E6) were measured to explore litter humification processes. Results Litter humification was controlled by both litter stoichiometric traits and local-environment conditions, while stoichiometric traits played a more obvious regulatory role. Significant discrepancies in litter humus were detected among six plant functional groups; more precisely, litter of evergreen conifer and shrubs showed a net accumulation of Huc and FAc during winter, whereas others experienced more mineralization than accumulation. Huc, HAc, and hue coefficient were mainly controlled by cellulose/N, cellulose/P, C/N, lignin/P, lignin/N, etc., yet FAc was more susceptible to local-environment conditions. Meanwhile, Huc, HAc and FAc, as well as humification degree and E4/E6 differed between AS and CF, with faster humification in AS. Conclusion We suggest that litter stoichiometric traits are more responsible for regulating litter humification than environmental conditions in elevational gradients. Furthermore, potential upward shifts by plants may accelerate litter humification in alpine ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据