4.4 Article

Two-temperature effects in Hall-MHD simulations of the HIT-SI experiment

期刊

PHYSICS OF PLASMAS
卷 27, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0006311

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-96ER54361, DE-SC0016256]
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. student technology fund (STF) at the University of Washington
  4. U.S. Department of Energy (DOE) [DE-FG02-96ER54361, DE-SC0016256] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

A two-temperature Hall-magnetohydrodynamic (Hall-MHD) model, which evolves the electron and ion temperatures separately, is implemented in the PSI-Tet 3D MHD code and used to model plasma dynamics in the Helicity Injected Torus-Steady Inductive (HIT-SI) experiment. The two-temperature model is utilized for HIT-SI simulations in both the PSI-Tet and NIMROD codes at a number of different injector frequencies in the 14.5 - 68.5 kHz range. At all frequencies, the NIMROD two-temperature model results in increased toroidal current, lower chord-averaged density, higher average temperatures, outward radial shift of the current centroid, and axial symmetrization of the current centroid, relative to the single-temperature NIMROD simulations. The two-temperature PSI-Tet model illustrates similar trends, but at high frequency operation, it exhibits lower electron temperature, smaller toroidal current, and decreased axial symmetrization with respect to the single-temperature PSI-Tet model. With all models, average temperatures and toroidal currents increase with the injector frequency. Power balance and heat fluxes to the wall are calculated for the two-temperature PSI-Tet model and illustrate considerable viscous and compressive heating, particularly at high injector frequency. Parameter scans are also presented for artificial diffusivity, wall temperature, and density. Both artificial diffusivity and the density boundary condition significantly modify the plasma density profiles, leading to larger average temperatures, toroidal current, and relative density fluctuations at low densities. A low density simulation achieves sufficiently high current gain (G>5) to generate significant volumes of closed flux lasting 1-2 injector periods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据