4.4 Article

Electronic and thermoelectric properties of the layered Zintl phase CaIn2P2: first-principles calculations

期刊

PHILOSOPHICAL MAGAZINE
卷 100, 期 23, 页码 3023-3039

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786435.2020.1799101

关键词

Layered Zintl phase; first-principles calculations; band structure; effective mass; transport coefficients

资金

  1. Algerian General Directorate of Scientific Research and Technological Development

向作者/读者索取更多资源

We have studied the doping concentration dependence of the thermoelectric (TE) properties for the n- and p-doped CaIn2P2 layered Zintl phase at two fixed temperatures: T = 600 and 900 K through first-principles electronic band structure calculations combined with Boltzmann's transport theory within charge-carrier relaxation time and rigid band approximations. The band structure calculated using the Tran-Blaha modified Becke-Johnson potential shows a fundamental indirect energy band gap (E-g) of 1.10 eV that comes from the polyanion (In2P2)(-2). CaIn2P2 exhibit a mixture of flat and dispersive energy bands in the energy window from -E-g/2 to E-g/2 eV, which is a required characteristic for high electrical transport coefficients. The computed lattice thermal conductivity for CaIn2P2 is equal to 1.34 Wm(-1)K(-1) at 900 K and 0.70 Wm(-1)K(-1) at 1250 K. This relatively low lattice thermal conductivity of CaIn2P2 can be mainly attributed to its layered crystalline structure. The highest value of the figure of merit of CaIn2P2, viz. ZT = 0.73 (0.71), is obtained for an optimal electron (hole) concentration of 6.0 x 10(19)cm(-3) (1.5 x 10(19)cm(-3)) at 900 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据