4.6 Article

Kawasaki disease: SOCS2-AS1/miR-324-5p/CUEDC2 axis regulates the progression of human umbilical vein endothelial cells

期刊

PEDIATRIC RESEARCH
卷 92, 期 2, 页码 388-395

出版社

SPRINGERNATURE
DOI: 10.1038/s41390-020-1029-9

关键词

-

向作者/读者索取更多资源

SOCS2-AS1 promotes the progression of HUVECs in KD by upregulating CUEDC2 through inhibiting miR-324-5p. These findings provide new insights for KD treatment.
Background Kawasaki disease (KD) is the most prevailing cause of acquired heart disease in children, due to permanent coronary artery damage. Recently, the role of long noncoding RNAs (lncRNAs) in human diseases has been highlighted. However, the role of lncRNA SOCS2 antisense RNA 1 (SOCS2-AS1) on the function of human umbilical vein endothelial cells (HUVECs) in KD remains elusive. Methods SOCS2-AS1 expression was examined via RT-qPCR. CCK-8, EdU, caspase-3 activity, flow cytometry and TUNEL assays were conducted for exploring the function of SOCS2-AS1 in HUVECs of KD. The interaction among RNAs (SOCS2-AS1, miR-324-5p and CUEDC2) was validated via luciferase reporter, RIP and RNA pull-down assays. Results SOCS2-AS1 was highly expressed in serum and tissues of KD patients. SOCS2-AS1 depletion repressed the proliferation of HUVECs, whereas it facilitated apoptosis. Further, SOCS2-AS1 could bind with miR-324-5p and negatively regulated miR-324-5p expression in HUVECs. Besides, CUE domain containing 2 (CUEDC2) was the downstream target of miR-324-5p, and SOCS2-AS1 could release CUEDC2 expression via sponging miR-324-5p in HUVECs. Furthermore, downregulating miR-324-5p or upregulating CUEDC2 could rescue the progression of HUVECs restrained by SOCS2-AS1 knockdown. Conclusions SOCS2-AS1 upregulates CUEDC2 via inhibiting miR-324-5p to promote the progression of HUVECs in KD, providing new insights for KD treatment. Impact SOCS2-AS1 is highly expressed in the serum of KD patients. SOCS2-AS1 contributes to cell proliferation in HUVECs of KD through elevating CUEDC2 expression by sequestering miR-324-5p. SOCS2-AS1/miR-324-5p/CUEDC2 axis exerts a progression-facilitating function in KD. These findings suggest SOCS2-AS1 as a novel potential target for KD treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据