4.6 Article

Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm

期刊

PEDIATRIC RESEARCH
卷 88, 期 5, 页码 739-748

出版社

SPRINGERNATURE
DOI: 10.1038/s41390-020-1024-1

关键词

-

资金

  1. Swiss National Science Foundation [320030_169733]
  2. Gottfried and Julia Bangerter-Rhyner Foundation
  3. Hartmann Muller Foundation
  4. Anna Mueller Grocholski Foundation
  5. Uniscientia Foundation
  6. Swiss National Science Foundation (SNF) [320030_169733] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Background Executive function deficits in children born very preterm (VPT) have been linked to anatomical abnormalities in white matter and subcortical brain structures. This study aimed to investigate how altered brain metabolism contributes to these deficits in VPT children at school-age. Methods Fifty-four VPT participants aged 8-13 years and 62 term-born peers were assessed with an executive function test battery. Brain metabolites were obtained in the frontal white matter and the basal ganglia/thalami, using proton magnetic resonance spectroscopy (MRS).N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-Inositol (mI)/Cr were compared between groups and associations with executive functions were explored using linear regression. Results In the frontal white matter, VPT showed lower Glx/Cr (mean difference: -5.91%, 95% CI [-10.50, -1.32]), higher Cho/Cr (7.39%, 95%-CI [2.68, 12.10]), and higher mI/Cr (5.41%, 95%-CI [0.18, 10.64]) while there were no differences in the basal ganglia/thalami. Lower executive functions were associated with lower frontal Glx/Cr ratios in both groups (beta = 0.16,p = 0.05) and higher mI/Cr ratios in the VPT group only (interaction:beta = -0.17,p = 0.02). Conclusion Long-term brain metabolite alterations in the frontal white matter may be related to executive function deficits in VPT children at school-age. Impact Very preterm birth is associated with long-term brain metabolite alterations in the frontal white matter. Such alterations may contribute to deficits in executive function abilities. Injury processes in the brain can persist for years after the initial insult. Our findings provide new insights beyond structural and functional imaging, which help to elucidate the processes involved in abnormal brain development following preterm birth. Ultimately, this may lead to earlier identification of children at risk for developing deficits and more effective interventions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据