4.3 Article

Glutamate Attenuates the Survival Property of IGFR through NR2B Containing N-Methyl-D-aspartate Receptors in Cortical Neurons

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2020/5173184

关键词

-

资金

  1. National Natural Science Foundation of China [31771128]
  2. Science and Technology Development Fund, Macau SAR [0127/2019/A3, 0044/2019/AGJ, 0113/2018/A3]
  3. University of Macau [MYRG2018-00134-FHS]

向作者/读者索取更多资源

Glutamate-induced neurotoxicity is involved in various neuronal diseases, such as Alzheimer's disease. We have previously reported that glutamate attenuated the survival signaling of insulin-like growth factor-1 (IGF-1) by N-methyl-D-aspartate receptors (NMDARs) in cultured cortical neurons, which is viewed as a novel mechanism of glutamate-induced neurotoxicity. However, the phosphorylation sites of IGF-1 receptor (IGF-1R) affected by glutamate remain to be elucidated, and importantly, which subtype of NMDARs plays a major role in attenuating the prosurvival effect of IGF-1 is still unknown. In the present study, glutamate was found to attenuate the tyrosine phosphorylation of the IGF-1R and the prosurvival effect of IGF-1 in primary cultured cortical neurons. NMDAR inhibitors, MK801 and AP-5, blocked the inhibitory effect of glutamate on the phosphorylation of IGF-1R and increased cell survival, while DNQX, LY341495, and CPCCOEt had no effect. Interestingly, we found that glutamate decreased the phosphorylation of tyrosine residues 1131, 1135/1136, 1250/1251, and 1316, while it had no effect on tyrosine 950 in cortical neurons. Moreover, using specific antagonists and siRNA to downregulate individual NMDAR subunits, we found that the activation of NR2B-containing NMDARs was essential for glutamate to inhibit IGF-1 signaling. These findings indicate that the glutamate-induced attenuation of IGF-1 signaling is mediated by NR2B-containing NMDARs. Our study also proposes a novel mechanism of altering neurotrophic factor signaling by the activation of NMDARs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据