4.6 Article

Performance Analysis and Model-Free Design of Deracemization via Temperature Cycles

期刊

ORGANIC PROCESS RESEARCH & DEVELOPMENT
卷 24, 期 8, 页码 1515-1522

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.oprd.0c00266

关键词

deracemization via temperature cycles; resolution; racemization; process design; operating conditions

资金

  1. European Union's Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie Grant [722456 CORE ITN]

向作者/读者索取更多资源

Solid-state deracemization via temperature cycles is a technique that has been shown to be effective to isolate the pure enantiomer of a conglomerate-forming compound. This process has a large number of operating parameters that can be adjusted according to system-specific properties. On the one hand, this feature makes the process flexible and prone to optimization. On the other hand, the design space is so large that experimental optimization of the process can become long and cumbersome. In this work, we achieve two results. First, we show that deracemization via temperature cycles works very effectively for two new experimental systems, namely, the chiral compounds 2-(benzylideneamino)-2-(2-chlorophenyl)acetamide (CPG) and 3,3-dimethyl-2-((naphthalen-2-ylmethylene)amino)butanenitrile (tLEU). Second, we propose a new approach for the design of an effective deracemization process via temperature cycles for a new compound. Therefore, in this work, we investigate the effect of different operating conditions, namely, the initial enantiomeric excess, the cooling rate, the temperature range, and the catalyst concentration, on the performance of deracemization via temperature cycles for the new compounds CPG and tLEU and for N-(2-methylbenzylidene)phenylglycine amide (NMPA), which was already studied in a previous paper. On the basis of these outcomes, we conclude by proposing a model-free screening strategy for the design of an effective deracemization process via temperature cycles for a new compound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据