4.7 Article

A new model for wave-induced instantaneous liquefaction in a non-cohesive seabed with dynamic permeability

期刊

OCEAN ENGINEERING
卷 213, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2020.107597

关键词

Dynamic permeability; Excess pore pressure; Soil liquefaction; Wave-seabed interaction

资金

  1. National Natural Science Foundation of China [51808034, 11972036]

向作者/读者索取更多资源

Wave-induced instantaneous liquefaction is crucial to evaluating the stability of offshore foundations. For the instantaneous liquefaction, most previous studies treated the seabed as an invariant poro-elastic medium and hence led to nonphysical tensile stress in the non-cohesive liquefied zone. In this study, a penalty-like dynamic permeability model is proposed, based on the experimental evidences of permeability increase during soil liquefaction. The nonlinearity induced by the dynamic permeability is solved by an iterative procedure, based on the Newton-Raphson method. The numerical procedure is implemented in an in-house code and compared with analytical solutions under the constant permeability assumption. Numerical observations validate that the proposed dynamic permeability model can alleviate or even eliminate the nonphysical tensile stress in the instantaneously-liquefied zone. In contrast to the constant permeability model, the new model with a dynamic permeability obtains a better agreement with existing cylinder tests under one-dimensional wave loading conditions. For the numerical examples presented, the liquefaction depths predicted by constant permeability can be up to twice of those by the new dynamic permeability model. It is concluded that the conventional model with constant permeability overestimates the liquefaction potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据