4.7 Article

Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping

期刊

NONLINEAR DYNAMICS
卷 101, 期 4, 页码 2157-2180

出版社

SPRINGER
DOI: 10.1007/s11071-020-05876-0

关键词

Geometrically nonlinear damping; Slow invariant manifold; Incremental harmonic balance method; Nonlinear energy sink; Asymptotic analysis

资金

  1. Jiangsu Innovation Program for Graduate Education [KYCX17-0233]

向作者/读者索取更多资源

In this paper, the considered two-DOF system consists of a linear oscillator (LO) under external harmonic excitation and an attached lightweight nonlinear energy sink (NES) with local potential and geometrically nonlinear damping. With the application of complex-averaging method, the steady-state dynamical behavior of the system is investigated by the slow invariant manifold, folding singularities and equilibrium points. Different scenarios of strongly modulated responses are presented based on the geometry of SIM, and the numerical simulation results are in consistent with the analytical prediction. The incremental harmonic balance method is applied to detect the frequency response curves of the system around the fundamental resonance, and the accuracy of the theoretical analysis is fully verified by the numerical results obtained by direct integration of equations of motion of the system. It is demonstrated that the increase in external forcing amplitude, global nonlinear stiffness and local nonlinear stiffness can drive the frequency response curves move toward the right and widen the frequency bandwidth of the coexistence of multiple steady-state response regimes, while the increase in nonlinear damping the reverse. The numerical simulation results also show that the addition of geometrically nonlinear damping and local potential in the proposed NES can drastically enhance the capacity of the nonlinear vibration absorber to suppress the shock-induced response of the LO, and the proposed NES is effective for a comparatively broad range of applied impulsive energies, particularly for the high impulsive energies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据