4.7 Article

Embedding and approximation theorems for echo state networks

期刊

NEURAL NETWORKS
卷 128, 期 -, 页码 234-247

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2020.05.013

关键词

Reservoir computing; Lorenz equations; Dynamical system; Delay embedding; Persistent homology; Recurrent neural networks

资金

  1. ESPRC Centre for Doctoral Training in Statistical Applied Mathematics at Bath [EP/L015684/1]

向作者/读者索取更多资源

Echo State Networks (ESNs) are a class of single-layer recurrent neural networks that have enjoyed recent attention. In this paper we prove that a suitable ESN, trained on a series of measurements of an invertible dynamical system, induces a C1 map from the dynamical system's phase space to the ESN's reservoir space. We call this the Echo State Map. We then prove that the Echo State Map is generically an embedding with positive probability. Under additional mild assumptions, we further conjecture that the Echo State Map is almost surely an embedding. For sufficiently large, and specially structured, but still randomly generated ESNs, we prove that there exists a linear readout layer that allows the ESN to predict the next observation of a dynamical system arbitrarily well. Consequently, if the dynamical system under observation is structurally stable then the trained ESN will exhibit dynamics that are topologically conjugate to the future behaviour of the observed dynamical system. Our theoretical results connect the theory of ESNs to the delay-embedding literature for dynamical systems, and are supported by numerical evidence from simulations of the traditional Lorenz equations. The simulations confirm that, from a one dimensional observation function, an ESN can accurately infer a range of geometric and topological features of the dynamics such as the eigenvalues of equilibrium points, Lyapunov exponents and homology groups. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据