4.8 Article

Towards single-species selectivity of membranes with subnanometre pores

期刊

NATURE NANOTECHNOLOGY
卷 15, 期 6, 页码 426-436

出版社

NATURE RESEARCH
DOI: 10.1038/s41565-020-0713-6

关键词

-

向作者/读者索取更多资源

Synthetic membranes with pores at the subnanometre scale are at the core of processes for separating solutes from water, such as water purification and desalination. While these membrane processes have achieved substantial industrial success, the capability of state-of-the-art membranes to selectively separate a single solute from a mixture of solutes is limited. Such high-precision separation would enable fit-for-purpose treatment, improving the sustainability of current water-treatment processes and opening doors for new applications of membrane technologies. Herein, we introduce the challenges of state-of-the-art membranes with subnanometre pores to achieve high selectivity between solutes. We then analyse experimental and theoretical literature to discuss the molecular-level mechanisms that contribute to energy barriers for solute transport through subnanometre pores. We conclude by providing principles and guidelines for designing next-generation single-species selective membranes that are inspired by ion-selective biological channels. Membranes with subnanometre pores have the potential to provide solute-to-solute selectivity. This Perspective explores challenges and provides guidelines for designing next-generation single-species selective membranes

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据