4.7 Article

IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes

期刊

NATURE IMMUNOLOGY
卷 21, 期 10, 页码 1219-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41590-020-0750-1

关键词

-

资金

  1. NIH [2P01HL029582, R01 AA023722, P01CA062220, R01 HL122283, P50AA024333]
  2. National Multiple Sclerosis Society [RG5130A2/1]
  3. American Diabetes Association [1-16-PDF-138]

向作者/读者索取更多资源

Chronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high-fat-diet-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced high-fat diet-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that the IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity. Obesity is often accompanied by chronic inflammation. Li and colleagues show that, in mice fed high-fat diets, IL-1 signaling in adipocytes induces an unconventional IRAK2 translocation to mitochondria and suppresses respiratory super-complex formation to alter mitochondrial function, and exacerbates obesity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据