4.8 Article

Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene

期刊

NATURE CHEMISTRY
卷 12, 期 7, 页码 595-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41557-020-0493-5

关键词

-

向作者/读者索取更多资源

The incorporation of photoswitchable molecules into solid-state materials holds promise for the fabrication of responsive materials, the properties of which can be controlled on-demand. However, the possible applications of these materials are limited due to the restrictions imposed by the solid-state environment on the incorporated photoswitches, which render the photoisomerization inefficient. Here we present responsive porous switchable framework materials based on a bistable chiroptical overcrowded alkene incorporated in the backbone of a rigid aromatic framework. As a consequence of the high intrinsic porosity, the resulting framework readily responds to a light stimulus, as demonstrated by solid-state Raman and reflectance spectroscopies. Solid-state(13)C NMR spectroscopy highlights an efficient and quantitative bulk photoisomerization of the incorporated light-responsive overcrowded olefins in the solid material. Taking advantage of the quantitative photoisomerization, the porosity of the framework and the consequent gas adsorption can be reversibly modulated in response to light and heat. Despite numerous potential applications, the development of light-responsive solid materials based on molecular photoswitches is impeded by the low efficiency of photoisomerization in the solid environment. Now a robust, solid porous material made from tetraphenylmethane and a photoswitchable overcrowded alkene exhibits nearly quantitative photoisomerization in the bulk and in photomodulation of gas uptake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据