4.8 Article

A mobile robotic chemist

期刊

NATURE
卷 583, 期 7815, 页码 237-+

出版社

NATURE RESEARCH
DOI: 10.1038/s41586-020-2442-2

关键词

-

资金

  1. Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design
  2. Engineering and Physical Sciences Research Council (EPSRC) [EP/N004884/1]
  3. Newton Fund [EP/R003580/1]
  4. CSols Ltd.
  5. China Scholarship Council

向作者/读者索取更多资源

Technologies such as batteries, biomaterials and heterogeneous catalysts have functionsthat are defined by mixtures of molecular and mesoscale components. As yet, this multi-length-scale complexity cannot be fully captured by atomistic simulations, and the design of such materials from first principles is still rare(1-5). Likewise, experimental complexity scales exponentially with the number of variables, restricting most searches to narrow areas of materials space. Robots can assist in experimental searches(6-14)but their widespread adoption in materials research is challenging because of the diversity of sample types, operations, instruments and measurements required. Here we use a mobile robot to search for improved photocatalysts for hydrogen production from water(15). The robot operated autonomously over eight days, performing 688 experiments within a ten-variable experimental space, driven by a batched Bayesian search algorithm(16-18). This autonomous search identified photocatalyst mixturesthat were six times more active than the initial formulations, selecting beneficial components and deselecting negative ones. Our strategy uses a dexterous(19,20)free-roaming robot(21-24), automating the researcher ratherthan the instruments. This modular approach could be deployed in conventional laboratories for a range of research problems beyond photocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据