4.8 Article

Mechanistic Insights into Superlattice Transformation at a Single Nanocrystal Level Using Nanobeam Electron Diffraction

期刊

NANO LETTERS
卷 20, 期 7, 页码 5267-5274

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.0c01579

关键词

Nanocrystals; self-assembly; oriented attachment; superlattice; 4D-STEM; EMPAD

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0018026]
  2. NSF MRSEC program [DMR-1719875]
  3. Cornell University
  4. Kavli Institute at Cornell
  5. CAPES, Brazil [13159/13-5]
  6. NSF [1803878]
  7. NSF GRFP [DGE-1650441]
  8. Weill Institute
  9. [NSF-MRI-1429155]
  10. Directorate For Engineering
  11. Div Of Chem, Bioeng, Env, & Transp Sys [1803878] Funding Source: National Science Foundation
  12. U.S. Department of Energy (DOE) [DE-SC0018026] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Understanding the mechanism and ultimately directing nanocrystal (NC) superlattice assembly and attachment have important implications on future advances in this emerging field. Here, we use 4D-STEM to investigate a monolayer of PbS NCs at various stages of the transformation from a hexatic assembly to a nonconnected square-like superlattice over large fields of view. Maps of nanobeam electron diffraction patterns acquired with an electron microscope pixel array detector (EMPAD) offer unprecedented detail into the 3D crystallographic alignment of the polyhedral NCs. Our analysis reveals that superlattice transformation is dominated by translation of prealigned NCs strongly coupled along the < 11n >(AL) direction and occurs stochastically and gradually throughout single grains. We validate the generality of the proposed mechanism by examining the structure of analogous PbSe NC assemblies using conventional transmission electron microscopy and selected area electron diffraction. The experimental results presented here provide new mechanistic insights into NC self-assembly and oriented attachment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据