4.7 Article

Effect of a strong magnetic field on gravity-mode period spacings in red giant stars

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa1823

关键词

MHD; waves; methods: numerical; stars: interiors; stars: magnetic field

资金

  1. Churchill College, Cambridge through a Junior Research Fellowship

向作者/读者索取更多资源

When a star evolves into a red giant, the enhanced coupling between core-based gravity modes and envelope-based pressure modes forms mixed modes, allowing its deep interior to be probed by asteroseismology. The ability to obtain information about stellar interiors is important for constraining theories of stellar structure and evolution, for which the origin of various discrepancies between prediction and observation is still under debate. Ongoing speculation surrounds the possibility that some red giant starsmay harbour strong (dynamically significant) magnetic fields in their cores, but interpretation of the observational data remains controversial. In part, this is tied to shortfalls in our understanding of the effects of strong fields on the seismic properties of gravity modes, which lies beyond the regime of standard perturbative methods. Here, we seek to investigate the effect of a strong magnetic field on the asymptotic period spacings of gravity modes. We use a Hamiltonian ray approach to measure the volume of phase space occupied by mode-forming rays, this being roughly proportional to the average density of modes (number of modes per unit frequency interval). A strong field appears to systematically increase this by about 10 per cent, which predicts a similar to 10 per cent smaller period spacing. Evidence of near integrability in the ray dynamics hints that the gravity-mode spectrum may still exhibit pseudo-regularities under a strong field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据