4.5 Article

Fatty Acid Oxidation Is an Adaptive Survival Pathway Induced in Prostate Tumors by HSP90 Inhibition

期刊

MOLECULAR CANCER RESEARCH
卷 18, 期 10, 页码 1500-1511

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-20-0570

关键词

-

资金

  1. National Health and Medical Research Council of Australia [1138648]
  2. Prostate Cancer Foundation of Australia [YI 1417, MRTA3, MRTA1]
  3. Cure Cancer Australia Priority-driven Collaborative Cancer Research Scheme [1164798]
  4. Master of Philosophy International Scholarship
  5. Freemason's Foundation Centre for Men's Health
  6. University of Adelaide George Fraser Scholarship
  7. Australian Research Council Future Fellowship [130101004]
  8. Cancer Council SA Beat Cancer Project Principal Cancer Research Fellowship [PRF1117]
  9. Robinson Fellowship
  10. University of Sydney
  11. EMBL Australia Group Leader award
  12. NHMRC Principal Research Fellowship [1058540]
  13. Movember Foundation
  14. Cancer Australia [1085471]
  15. National Health and Medical Research Council of Australia [1138648, 1058540] Funding Source: NHMRC

向作者/读者索取更多资源

HSP90 is a molecular chaperone required for stabilization and activation of hundreds of client proteins, including many known oncoproteins. AUY922 (luminespib), a new-generation HSP90 inhibitor, exhibits potent preclinical efficacy against several cancer types including prostate cancer. However, clinical use of HSP90 inhibitors for prostate cancer has been limited by toxicity and treatment resistance. Here, we aimed to design an effective combinatorial therapeutic regimen that utilizes subtoxic doses of AUY922, by identifying potential survival pathways induced by AUY922 in clinical prostate tumors. We conducted a proteomic analysis of 30 patient-derived explants (PDE) cultured in the absence and presence of AUY922, using quantitative mass spectrometry. AUY922 significantly increased the abundance of proteins involved in oxidative phosphorylation and fatty acid metabolism in the PDEs. Consistent with these findings, AUY922-treated prostate cancer cell lines exhibited increased mitochondrial mass and activated fatty acid metabolism processes. We hypothesized that activation of fatty acid oxidation is a potential adaptive response to AUY922 treatment and that cotargeting this process will sensitize prostate cancer cells to HSP90 inhibition. Combination treatment of AUY922 with a clinical inhibitor of fatty acid oxidation, perhexiline, synergistically decreased viability of several prostate cancer cell lines, and had significant efficacy in PDEs. The novel drug combination treatment induced cell-cycle arrest and apoptosis, and attenuated the heat shock response, a known mediator of HSP90 treatment resistance. This combination warrants further preclinical and clinical investigation as a novel strategy to overcome resistance to HSP90 inhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据