4.6 Article

A robust simulation-optimization approach for pre-disaster multi-period location-allocation-inventory planning

期刊

MATHEMATICS AND COMPUTERS IN SIMULATION
卷 179, 期 -, 页码 69-95

出版社

ELSEVIER
DOI: 10.1016/j.matcom.2020.07.022

关键词

Simulation-optimization; Disaster planning; Location-allocation; Robust optimization

向作者/读者索取更多资源

The research presents a robust simulation-optimization approach for planning in the preparedness phase, considering the interactive relations of critical infrastructures in a city affected by an earthquake and the stochastic demand behavior for relief commodities. A customized genetic algorithm is used to solve the proposed mathematical model.
Natural disasters such as earthquakes always threaten human societies. Therefore, preparedness planning seems to be necessary to reduce casualties and accelerate relief efforts. Decisions in the preparedness phase include determining the optimal location for distribution centers and suppliers, allocating them to affected areas, and determining the amount of inventory of distribution centers. In this research, a robust simulation-optimization approach is presented for the planning in the preparedness phase. Although the demand for relief commodities has been considered as a given parameters. Due to our best knowledge there is no research in which the demand for relief commodities including drinking water, food, blood, medicine, tents and non-drinking water, during the disaster is related to the interactive relations of critical infrastructures of the city affected by the earthquake, and the power of the earthquake. Most of the unplanned occasions are occurred when co-incidences of probabilities are happen together. When a critical urban infrastructure fails due to earthquake it may cause some difficulties in the other infrastructures. Co-incidences may cause some horrible tragedy. First, the critical infrastructures of the city affected by the earthquake are identified and the interactions of these infrastructures are simulated. Considering the interactions of critical infrastructures in a city, various scenarios for earthquake are designed and tested through simulation approach in order to estimate the mean and variance of demand for relief commodities. The stochastic demand behavior which is the output of the simulation approach is assumed as a stochastic parameter of a mathematical model for multi-period location-allocation-Inventory problem. Robust optimization approach is used to deal with uncertainty. The mathematical model determines the location of distribution centers and suppliers, and how they are allocated to the affected areas. The proposed mathematical model is solved using a customized genetic algorithm for a case study in Tehran. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据