4.2 Article

In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 645, 期 -, 页码 55-66

出版社

INTER-RESEARCH
DOI: 10.3354/meps13352

关键词

Nitrogen cycle Climate change; Pollution; Red Sea; Acetylene reduction assay; Acetylene inhibition assay

资金

  1. German Research Association (DFG) [Wi 2677/9-1]
  2. KAUST

向作者/读者索取更多资源

Eutrophication (i.e. the increase of [in-]organic nutrients) may affect the functioning of coral reefs, but knowledge about the effects on nitrogen (N) cycling and its relationship to productivity within benthic reef communities is scarce. Thus, we investigated how in situ manipulated eutrophication impacted productivity along with 2 counteracting N-cycling pathways (dinitrogen [N-2]fixation, denitrification), using a combined acetylene assay. We hypothesised that N-2-fixation would decrease and denitrification increase in response to eutrophication. N fluxes and productivity (measured as dark and light oxygen fluxes assessed in incubation experiments) were determined for 3 dominant coral reef functional groups (reef sediments, turf algae, and the scleractinian coral Pocillo-pora verrucosa) after 8 wk of in situ nutrient enrichment in the central Red Sea. Using slow-release fertiliser, we increased the dissolved inorganic N concentration by up to 7-fold compared to ambient concentrations. Experimental nutrient enrichment stimulated both N-2-fixation and denitrification across all functional groups 2- to 7-fold and 2- to 4-fold, respectively. Productivity doubled in reef sediments and remained stable for turf algae and P. verrucosa. Our data therefore suggest that (1) turf algae are major N-2-fixers in coral reefs, while denitrification is widespread among all investigated groups; (2) surprisingly, and contrary to our hypothesis, both N-2-fixation and denitrification are involved in the response to moderate N eutrophication, and (3) stimulated N-2-fixation and denitrification are not directly influenced by productivity. Our findings underline the importance and ubiquity of microbial N cycling in (Red Sea) coral reefs along with its sensitivity to eutrophication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据