4.5 Article

Three-dimensional inhomogeneous magnetization transfer with rapid gradient-echo (3D ihMTRAGE) imaging

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 84, 期 6, 页码 2964-2980

出版社

WILEY
DOI: 10.1002/mrm.28324

关键词

brain; inhomogeneous magnetization transfer; MPRAGE; MT; myelin; spinal cord

资金

  1. GE Healthcare
  2. National Institute of Neurological Disorders and Stroke [R21NS114546]

向作者/读者索取更多资源

Purpose To demonstrate the feasibility of integrating the magnetization transfer (MT) preparations required for inhomogeneous MT (ihMT) within an MPRAGE-style acquisition. Such a sequence allows for reduced power deposition and easy inclusion of other modules. Methods An ihMT MPRAGE-style sequence (ihMTRAGE) was initially simulated to investigate acquisition of the 3D ihMT data sequentially, or in an interleaved manner. The ihMTRAGE sequence was implemented on a 3T clinical scanner to acquire ihMT data from the brain and spine. Results Both simulations and in vivo data provided an ihMT signal that was significantly greater using a sequential ihMTRAGE acquisition, compared with an interleaved implementation. Comparison with a steady-state ihMT acquisition (defined as having one MT RF pulse between successive acquisition modules) demonstrated how ihMTRAGE allows for a reduction in average power deposition, or greater ihMT signal at equal average power deposition. Inclusion of a prospective motion-correction module did not significantly affect the ihMT signal obtained from regions of interest in the brain. The ihMTRAGE acquisition allowed combination with a spatial saturation module to reduce phase wrap artifacts in a cervical spinal cord acquisition. Conclusions Use of preparations necessary for ihMT experiments within an MPRAGE-style sequence provides a useful alternative for acquiring 3D ihMT data. Compared with our steady-state implementation, ihMTRAGE provided reduced power deposition, while allowing use of the maximum intensity from off-resonance RF pulses. The 3D ihMTRAGE acquisition allowed combination of other modules with the preparation necessary for ihMT experiments, specifically motion compensation and spatial saturation modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据