4.5 Article

qMTNet: Accelerated quantitative magnetization transfer imaging with artificial neural networks

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 85, 期 1, 页码 312-322

出版社

WILEY
DOI: 10.1002/mrm.28411

关键词

acceleration; artificial neural network; deep learning; magnetization transfer; quantitative imaging

资金

  1. National Research Foundation of Korea [NRF-2020R1A2C2008949, NRF-2018M3A9B5023527]
  2. Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) - Ministry of Health & Welfare of South Korea [HI16C1111, HI19C0149]
  3. National Research Foundation of Korea [2018M3A9B5023527] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The use of artificial neural networks, qMTNet, significantly accelerates data acquisition and fitting for qMT imaging, showing high performance and producing parameters in concordance with ground truth.
Purpose To develop a set of artificial neural networks, collectively termed qMTNet, to accelerate data acquisition and fitting for quantitative magnetization transfer (qMT) imaging. Methods Conventional and interslice qMT data were acquired with two flip angles at six offset frequencies from seven subjects for developing the networks and from four young and four older subjects for testing the generalizability. Two subnetworks, qMTNet-acq and qMTNet-fit, were developed and trained to accelerate data acquisition and fitting, respectively. qMTNet-2 is the sequential application of qMTNet-acq and qMTNet-fit to produce qMT parameters (exchange rate, pool fraction) from undersampled qMT data (two offset frequencies rather than six). qMTNet-1 is one single integrated network having the same functionality as qMTNet-2. qMTNet-fit was compared with a Gaussian kernel-based fitting. qMT parameters generated by the networks were compared with those from ground truth fitted with a dictionary-driven approach. Results The proposed networks achieved high peak signal-to-noise ratio (>30) and structural similarity index (>97) in reference to the ground truth. qMTNet-fit produced qMT parameters in concordance with the ground truth with better performance than the Gaussian kernel-based fitting. qMTNet-2 and qMTNet-1 could accelerate data acquisition at threefold and accelerate fitting at 5800- and 4218-fold, respectively. qMTNet-1 showed slightly better performance than qMTNet-2, whereas qMTNet-2 was more flexible for applications. Conclusion The proposed single (qMTNet-1) and two joint neural networks (qMTNet-2) can accelerate qMT workflow for both data acquisition and fitting significantly. qMTNet has the potential to accelerate qMT imaging for clinical applications, which warrants further investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据