4.5 Article

ARF-Crack: rotation invariant deep fully convolutional network for pixel-level crack detection

期刊

MACHINE VISION AND APPLICATIONS
卷 31, 期 6, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00138-020-01098-x

关键词

Crack detection; Corrosion detection; Fully convolutional networks; Rotation invariant; Structural health monitoring

向作者/读者索取更多资源

Autonomous detection of structural defect from images is a promising, but also challenging task to replace manual inspection. With the development of deep learning algorithms, several studies have adopted deep convolutional neural networks (CNN) or fully convolutional networks (FCN) to detect cracks in pixel-level. However, a fundamental property of cracks, that they are rotation invariant, has never been exploited. Although the rotation-invariant property can be implicitly learned by data augmentation, the network needs more parameters to learn features of different orientations and thus tend to overfit the training data. In this study, a rotation-invariant FCN called ARF-Crack is proposed that utilizes the rotation-invariant property of cracks explicitly. The architecture of a state-of-the-art FCN called DeepCrack for pixel-level crack detection is adopted and revised where active rotating filters (ARFs) are used to encode the rotation-invariant property into the network. The proposed ARF-Crack is evaluated on several benchmark datasets including concrete cracks, pavement cracks and corrosion images. The experimental results show that the proposed ARF-Crack requires less number of network parameters and achieves the highest average precision values for all the benchmark datasets compared to other approaches. The proposed ARF-Crack has the potential of detecting other rotation-invariant defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据