4.7 Article

The effect of cell size on cellularZnandCdandZn-Cd-CO2colimitation of growth rate in marine diatoms

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 65, 期 12, 页码 2896-2911

出版社

WILEY
DOI: 10.1002/lno.11561

关键词

-

资金

  1. National Key R&D Program of China [2016YFA0601203]
  2. National Science Foundation of China [41576133, 41925026, 41721005]

向作者/读者索取更多资源

Cadmium (Cd) can serve as nutrient in marine diatoms by partially replacing zinc (Zn) in Zn-limited cells. A major basis for this is the replacement of Cd for Zn in a Cd-containing carbonic anhydrase (CDCA) needed for cellular acquisition of CO2. As a result of these interactions, cells can become colimited by Zn, Cd, and CO2. Large cell size should restrict the cellular uptake of Zn, Cd, and CO(2)due to decreasing surface to volume ratios and limitation of diffusive flux of these nutrients to the cell surface. Large cells are thus more likely to become Zn-Cd-CO(2)colimited than smaller ones. These predictions were confirmed in experiments with three marine diatoms:Thalassiosira pseudonana,Thalassiosira weissflogii, andDitylum brightwellii, ranging in cell volume from 50 to 6000 fL. Cellular Zn : C ratios decreased by 10-fold between the largest and smallest species, and consequently, the largest diatom was more readily growth-limited than smaller ones by low external concentrations of bioavailable dissolved inorganic Zn (Zn '). Decreasing cellular Zn : C ratios were accompanied by large increases in cellular Cd uptake rates and Cd : C ratios. However, at the lowest Zn ' concentrations, Cd uptake plateaued, with the larger cells having lower cellular concentrations of both Zn and Cd. Cellular replacement of Zn by Cd was accompanied by increases in cellular CDCA expression. The largest diatom had higher combined carbonic anhydrase activities for a given Zn-, Cd-limited growth rate, supporting the hypothesis that these cells could be colimited by Zn, Cd, and CO(2)at low external CO(2)concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据