4.6 Article

Electrophoretic Deposition of Nanoporous Oxide Coatings from Concentrated CuO Nanoparticle Dispersions

期刊

LANGMUIR
卷 36, 期 28, 页码 8075-8085

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.0c00720

关键词

-

向作者/读者索取更多资源

Electrophoretic deposition (EPD) of nanoporous oxide coatings is an interesting research avenue owing to the experimental simplicity and broad scope of applications and materials. In this study, the properties of concentrated (up to 5000 mg/L), nonaqueous CuO nanoparticle (NP) dispersions were tailored to produce micrometer-thick, nanoporous CuO films by EPD. In particular, we performed a systematic investigation of the electrophoretic mobilities and size distributions of dispersed CuO aggregates and developing agglomerates in different organic solvents for concentrations ranging from SO to 5000 mg/L with and without surfactant addition. Time-resolved dynamic light scattering analyses showed that aggregate mobilities and agglomeration rates decrease with increasing hydrocarbon chain length of the organic solvent (from ethanol to hexanol) and thus with increasing viscosity. The highest electrophoretic mobility was obtained for CuO NP aggregates and agglomerates dispersed in ethanol as a solvent. However, the addition of >= 0.5 wt % acetylacetone as a surfactant is required to stabilize these dispersions for subsequent EPD and at the same time introduce a net attractive (electrostatic) interaction between neighboring agglomerates on the substrate to promote layer formation during the EPD step. The produced micrometer-thick nanoporous CuO coatings can serve as high surface area nanostructured materials or nanoporous scaffolds in catalysis, combustion, propellants, and nanojoining.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据