4.4 Article

Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling-Part II: Implementation With Machine Learning

期刊

出版社

ASME
DOI: 10.1115/1.4047751

关键词

bearing design and technology; fluid film lubrication; hydrodynamic lubrication; journal bearings; thermoelastohydrodynamic lubrication

资金

  1. Texas A&M Turbomachinery Research Consortium (TRC)

向作者/读者索取更多资源

The research found that by using machine learning and three-dimensional CFD modeling, the Reynolds TEHD TPJB model can be improved for better accuracy while maintaining computational efficiency.
Reynolds based thermo-elasto-hydrodynamic (TEHD) simulations of tilting pad journal bearings (TPJBs) generally provide accurate results; however, the uncertainty of the pad's leading edge thermal boundary conditions causes uncertainty of the results. The highly complex thermal-flow mixing action between pads (BPs) results from the oil supply nozzle jets and geometric features. The conventional Reynolds approach employs mixing coefficients (MCs), estimated from experience, to approximate a uniform inlet temperature for each pad. Part I utilized complex computational fluid dynamics (CFD) flow modeling to illustrate that temperature distributions at the pad inlets may deviate strongly from being uniform. The present work retains the uniform MC model but obtains the MC from detailed three-dimensional CFD modeling and machine learning, which could be extended to the radially and axially varying MC case. The steps for implementing an artificial neural network (ANN) approach for MC regression are provided as follows: (1) utilize a design of experiment step for obtaining an adaptable training set, (2) conduct CFD simulations on the BP to obtain the outputs of the training set, (3) apply an ANN learning process by Levenverg-Mardquart backpropagation with the Bayesian regularization, and (4) couple the ANN MC results with conventional TEHD Reynolds models. An approximate log fitting method provides a simplified approach for MC regression. The effectiveness of the Reynolds TEHD TPJB model with ANN regression-based MC distributions is confirmed by comparison with CFD based TEHD TPJB model results. The method obtains an accuracy nearly the same as the complete CFD model, but with the computational economy of a Reynolds approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据