4.7 Review

A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 144, 期 5, 页码 1959-1983

出版社

SPRINGER
DOI: 10.1007/s10973-020-09998-w

关键词

HNFs; Thermal conductivity; Viscosity; Preparation; Stability; NF

向作者/读者索取更多资源

Nanofluids and hybrid nanofluids are new heat transfer media with superior heat transfer characteristics that have gained significant attention. Hybrid nanofluids exhibit more suitable heat transfer performance and thermophysical properties compared to traditional heat transfer fluids and single nanofluids. Current research focuses on investigating the properties, preparation, and stability of hybrid nanofluids.
These days, the importance of energy consumption has led scientists to optimize thermal devices. One of the solutions proposed for this purpose is using solid nanoparticles to amend the thermal properties of conventional fluids. Adding the nanoparticles into the foundation fluids results in an improvement in the fluid properties (thermal conductivity, viscosity, etc.). Nanofluid (NF) has been drawing attention in various engineering applications in the past decade due to its superior heat transfer characteristics than the conventional working fluid. In recent years, the researchers have focused on adding two or more nanoparticles into foundation fluids, known as hybrid nanoparticles. Hybrid nanofluids (HNFs) suggest a more appropriate heat transfer performance and thermophysical features than the conventional heat transfer fluids (ethylene glycol, water and oil) and even NFs with single nanoparticles. It was proven that HNF can be an alternative to the single NF, since it can provide more heat transfer enhancement, particularly in the context of the solar energy, electromechanical, HVAC, electromechanical and automobile. In the current research, the properties, preparation and stability of HNFs are investigated. Also, some models and correlations for predicting HNFs properties are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据