4.7 Article

Role of sucrose in modulating the low-nitrogen-induced accumulation of phenolic compounds in lettuce (Lactuca sativaL.)

期刊

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
卷 100, 期 15, 页码 5412-5421

出版社

WILEY
DOI: 10.1002/jsfa.10592

关键词

nitrogen; sucrose; phenolic metabolism; nitrogen assimilation; carbon resource

资金

  1. National Natural Science Foundation of China [31872167]

向作者/读者索取更多资源

BACKGROUND Phenolic compounds are phytochemicals present in vegetables which contribute to human health. Although nitrogen deficiency and sucrose (Suc) are linked to phenolic production in vegetables, the relationship between them in the regulation of phenolic biosynthesis remains unknown. This study investigated the potential role of Suc in regulating phenolic biosynthesis of lettuce under low-nitrogen (LN) conditions. RESULTS Our results showed that LN treatment significantly increased Suc content in lettuce by inducing rapid increases in activities of sucrose synthesis-related enzymes. Exogenous Suc further stimulated LN-induced phenolic accumulation in lettuce by upregulating the expression of genes (PAL,CHS,F3H,DFR,F35HandUFGT) involved in phenolic biosynthesis. The opposite effects were true for exogenous 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) application. No changes were observed in chlorophyll content in LN-treated lettuce, in either the presence or absence of Suc application. Notably, exogenous DCMU resulted in decreases of maximum quantum efficiency of photosystem II (PSII) photochemistry, actual efficiency of PSII and electron transport rate in PSII and increase of quantum yield of non-regulated energy dissipation in PSII in lettuce under LN conditions, whereas these effects were reversed on Suc application. Exogenous Suc also increased glutamine synthetase and glutamate synthase activities in LN-treated lettuce. CONCLUSIONS These results suggest that Suc is involved in LN-induced phenolic production in lettuce by enhancing photosynthetic and nitrogen assimilation efficiency to increase the supply of carbon resources and precursors for phenolic biosynthesis. (c) 2020 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据