4.7 Article

Neuroprotective effects of mango cv. 'Ataulfo' peel and pulp against oxidative stress in streptozotocin-induced diabetic rats

期刊

出版社

WILEY
DOI: 10.1002/jsfa.10658

关键词

diabetes; oxidative stress; neuroprotection; byproducts

资金

  1. Consejo Nacional de Ciencia y Tecnologia (CONACyT)
  2. CONACyT [P00054044]

向作者/读者索取更多资源

The study suggests that mango has potent neuroprotective properties against diabetes-induced oxidative stress, and can be an alternative to prevent and treat biochemical alterations caused by diabetes.
BACKGROUND Oxidative stress has been implicated in the pathogenesis and progression of diabetes mellitus. Both can damage the brain. Mango and its by-products are sources of bioactive compounds with antioxidant properties. We hypothesized that mango cv. 'Ataulfo' peel and pulp mitigate oxidative stress in the brain of streptozotocin-induced diabetic rats. RESULTS Twenty-four male Wistar rats were divided into four groups: control, untreated diabetic (UD), diabetic treated with a mango-supplemented diet (MTD), and diabetic pretreated with a mango-supplemented diet (MPD). The rats were fed the different diets for 4 weeks after diabetes induction (MTD), or 2 weeks before and 4 weeks after induction (MPD). After the intervention, serum and brain (cerebellum and cortex) were collected to evaluate gene expression, enzyme activity, and redox biomarkers. Superoxide dismutase 2 (SOD2) expression increased in the cortex of the MTD group, whereas glutathione-S-transferase p1 (GSTp1) expression was higher in the cortex of the MTD group, and cortex and cerebellum of the MPD group. SOD1 activity was higher in the cerebellum and cortex of all diabetic groups, whereas GST activity increased in the cerebellum and cortex of the MPD group. Lipid peroxidation increased in the cerebellum and cortex of the UD group; however, a mango-supplemented diet prevented this increase in both regions, while also mitigating polyphagia and weight loss, and maintaining stable glycemia in diabetic rats. CONCLUSION We propose that mango exerts potent neuroprotective properties against diabetes-induced oxidative stress. It can be an alternative to prevent and treat biochemical alterations caused by diabetes. (c) 2020 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据