4.8 Article

The Critical Role of Dopant Cations in Electrical Conductivity and Thermoelectric Performance of n-Doped Polymers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 36, 页码 15340-15348

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c05699

关键词

-

资金

  1. National Natural Science Foundation of China [21790360, 21722201]
  2. National Key R&D Program of China [2017YFA0204701]

向作者/读者索取更多资源

The low n-doping efficiency of conjugated polymers with the molecular dopants limits their availability in electrical conductivity, thermoelectrics, and other electric applications. Recently, considerable efforts have focused on improving the ionization of dopants by modifying the structures of host polymers or n-dopants; however, the effect of ionized dopants on the electrical conductivity and thermoelectric performance of the polymers is still a puzzle. Herein, we try to reveal the role of molecular dopant cations on carrier transport through the systematic comparison of two n-dopants, TAM and N-DMBI-H. These two n-dopants exhibit various doping features with the polymer due to their different chemical structure characteristics. For instance, while doping, TAM negligibly perturbs the polymer backbone conformation and microstructural ordering; then after ionization, TAM cations possess weak p-backbone affinity but strong intrinsic affinity with side chains, which enables the doped system to screen the Coulomb potential spatially. Such doping features lead to high carrierization capabilities for TAM-doped polymers and further result in an excellent conductivity of up to 22 +/- 2.5 S cm(-1) and a power factor of over 80 mu Wm(-1) K-2, which are significantly higher than the state of the art values of the common n-dopant N-DMBI-H. More importantly, this strategy has also proven to be widely applicable in other doped polymers. Our investigations indicate the vital role of dopant counterions in high electrical and thermoelectric performance polymers and also suggest that, without sacrificing Seebeck coefficients, high conductivities can be realized with precise regulation of the interaction between the cations and the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据