4.8 Article

The Soft Molecular Polycrystalline Ferroelectric Realized by the Fluorination Effect

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 28, 页码 12486-12492

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c05372

关键词

-

资金

  1. National Natural Science Foundation of China [21991141, 21975114, 11904151]
  2. Natural Science Foundation of Zhejiang Province [LZ20B010001]
  3. Zhejiang Normal University

向作者/读者索取更多资源

For a century ferroelectricity has attracted wide-spread interest from science and industry. Inorganic ferroelectric ceramics have dominated multibillion dollar industries of electronic ceramics, ranging from nonvolatile memories to piezoelectric sonar or ultrasonic transducers, whose polarization can be reoriented in multiple directions so that they can be used in the ceramic and thin-film forms. However, the realization of macroscopic ferroelectricity in the polycrystalline form is challenging for molecular ferroelectrics. In pursuit of low-cost, biocompatible, and mechanically flexible alternatives, the development of multiaxial molecular ferroelectrics is imminent. Here, from quinuclidinium perrhenate, we applied fluorine substitution to successfully design a multiaxial molecular ferroelectric, 3-fluoroquinuclidinium perrhenate ([3-F-Q]ReO4), whose macroscopic ferroelectricity can be realized in both powder compaction and thin-film forms. The fluorination effect not only increases the intrinsic polarization but also reduces the coercive field strength. More importantly, it is also, as far as we know, the softest of all known molecular ferroelectrics, whose low Vickers hardness of 10.5 HV is comparable with that in poly(vinylidene difluoride) (PVDF) but almost 2 orders of magnitude lower than that in BaTiO3. These attributes make it an ideal candidate for flexible and wearable devices and biomechanical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据