4.3 Article

Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers

期刊

出版社

SPRINGER
DOI: 10.1007/s10948-020-05584-1

关键词

Photonic crystal; Superconductor; Nanocomposite; Temperature sensor; Tamm resonance; Sensitivity

向作者/读者索取更多资源

One-dimensional hybrid photonic crystal made of a superconductor (YBa2Cu3O7) nanocomposite and dielectric material (silicon) is theoretically investigated by the two-fluid model and the transfer matrix method based on Tamm resonance. The structure consists of a ternary photonic crystal capped by metallic layer Ag. Interesting multi-photonic band gaps are achieved for a suitable hybrid periodic system. The characteristic of these multi-photonic band gaps can be manipulated by the temperature of the system. The proposed sensor records high sensitivity (from 1.1 to 2.2 nm/K), very high signal-to-noise (from 24 to 125), and low resolution (from 0.11 to 0.14). Compared with previous works, our proposed sensor can achieve high sensitivity for near-zero (K) temperature sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据