4.7 Article

Large stroke quasi-zero stiffness vibration isolator using three-link mechanism

期刊

JOURNAL OF SOUND AND VIBRATION
卷 478, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2020.115344

关键词

Large stoke; Quasi-zero stiffness; Adjustable load capacity; Passive vibration isolator

资金

  1. Innovation Program of Shanghai Municipal Education Commission [2019-01-07-00-02-E00030]
  2. Program of Shanghai Academic/Technology Research Leader [19XD1421600]
  3. National Science Fund for Distinguished Young Scholars [11625208]

向作者/读者索取更多资源

Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs) is proposed. We design a symmetric polygon structure consisting of two three-link structures which exhibits a linear negative stiffness with large displacement. Then, the quasi-zero stiffness with large stroke could be realized by parallel connection of the symmetric polygon structure and linear springs. In addition, the load capacity of the proposed QZS system is extended by 1.5-2 times compared with a single polygon structure and can be flexibly adjusted. The design philosophy and operation principle of QZS isolator using TLMs are described in detail. The dynamic model is established based on the Lagrange equation. Numerical and experimental results demonstrate that the large stroke QZS vibration isolator has a lower resonant frequency and outperforms the linear counterpart especially at low frequencies. Moreover, the proposed isolator is less sensitive to vibration amplitude than the traditional QZS isolator. This novel design may provide a feasible method for large amplitude low frequency vibration control and isolation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据