4.3 Article

Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents

期刊

JOURNAL OF PSYCHOPHARMACOLOGY
卷 34, 期 9, 页码 1056-1067

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0269881120936458

关键词

2-(3; 5-Dimethoxy-4-((2-methylallyl)oxy)phenyl)ethanamine; 2-(2; 5-dimethoxy-4-methylphenyl)-2-methoxyethan-1-amine; abuse potential; mesolimbic dopaminergic system; novel psychoactive substance

向作者/读者索取更多资源

Background: Recently, the recreational use of substituted phenethylamines has grown rapidly. Among these are 2-(3,5-dimethoxy-4-((2-methylallyl)oxy)phenyl)ethanamine (MAL) and 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethan-1-amine (BOD). However, studies characterizing their abuse potential are still lacking. Aim: The purpose of this study was to investigate the abuse potential of MAL and BOD. Methods: The psychostimulant, reinforcing, and rewarding properties of MAL and BOD were analyzed using locomotor sensitization, self-administration, and conditioned place preference tests. Dopamine antagonists (i.e. SCH23390, haloperidol) were administered during conditioned place preference to evaluate the involvement of the mesolimbic dopamine system. Furthermore, dopamine-related protein expression in the nucleus accumbens and the ventral tegmental area was measured along with dopamine concentrations in the nucleus accumbens. Electroencephalography was conducted to determine effects of MAL and BOD on brain wave activity. Results: MAL induced psychostimulant effects and sensitization, while BOD induced locomotor depression in mice. Only MAL was self-administered by rats. Both drugs induced conditioned place preference in mice at different doses; dopamine receptor antagonists blocked MAL- and BOD-induced conditioned place preference. Both the compounds altered the expression of dopamine receptor D(1)and D(2)proteins in the nucleus accumbens and tyrosine hydroxylase (TH) and dopamine transporter in the ventral tegmental area, enhanced dopamine levels in the nucleus accumbens, and increased delta and gamma wave activities in the brain. Conclusions: MAL may induce abuse potential via the mesolimbic dopaminergic system and possibly accompanied by alterations in brain wave activity. Moreover, the lack of rewarding and reinforcing effects in BOD suggest that this drug may have little to no capability to engender compulsive behavior, though having found to induce alterations in dopaminergic system and brain wave activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据