4.8 Article

Interfacial integration and roll forming of quasi-solid-state Li-O2 battery through solidification and gelation of ionic liquid

期刊

JOURNAL OF POWER SOURCES
卷 463, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.228179

关键词

Li-O-2 battery; Quasi solid state; Noncovalent interactions; Solidification; Gelation; Interfacial integration

资金

  1. Hundred Talents program of the Chinese Academy of Sciences (2015)
  2. The Recruitment Program of Global Experts in Shanghai (2016)
  3. National Natural Science Foundation of China [51672299, 51772314]
  4. Shanghai Sailing Program [17YF1412400]

向作者/读者索取更多资源

The development of solid-state lithium-oxygen batteries is currently limited primarily by the high solid-solid interfacial resistance and the lack of efficient assembly of electrolyte and electrode. In this work, noncovalent interactions between the cations of an ammonium ionic liquid and both solid electrolytes and carbon air cathodes are introduced. The ionic liquid-based electrolytes (ILE) are solidified on Li6.40La3Zr1.40Ta0.60O12 (LLZTO) nanoparticles and gelated by multi-wall carbon nanotubes (MWCNTs), respectively, to construct LLZTO@ILE quasi-solid-state electrolyte (QSSE) and MWCNTs-LLZTO/ILE gel cathode (GC). The QSSE exhibits a high ionic conductivity of 1.71 x 10(-3) S cm(-1) at 60 degrees C, high Li-ion transference number of 0.56, broad electrochemical window of similar to 4.8 V and good thermal stability. The GC shows outstanding compatibility with QSSE. Quasi-solid-state Li-O-2 batteries are assembled by integrating QSSE and GC films with a facile roll forming method, showing a low total interfacial resistance (similar to 87 Omega cm(2)), and excellent reversible cycles (70 cycles) with low charge overpotential (<0.44 V) and quite high electrical energy efficiency (>70%) at 60 degrees C and 200 mA g(-1). A 0.12 Ah pouch-type Li-O-2 battery was achieved by this method. These results suggest that the noncovalent interactions initiated by IL cations could be an effective approach to solve the solid-solid interface issue and achieve high discharge capacity in solid-state energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据