4.5 Article

Strong Propensity of Ionic Liquids in Their Aqueous Solutions for an Organic-Modified Metal Surface

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 124, 期 34, 页码 7500-7507

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.0c04665

关键词

-

资金

  1. Air Force Office of Scientific Research AFOSR [FA9550-18-1-0420, FA9550-18-1-0021]

向作者/读者索取更多资源

Understanding ionic structure and electrostatic environments near a surface has both fundamental and practical value. In electrochemistry, especially when room temperature ionic liquids (ILs) are involved, the complex ionic structure near the interface is expected to crucially influence reactions. Here we report evidence that even in dilute aqueous solutions of several ILs, the ions aggregate near the surface in ways that are qualitatively different from simple electrolytes. We have used a vibrational probe molecule, 4-mercaptobenzonitrile (MBN), tethered to a metal surface to monitor the behavior of the ionic layers. The characteristic nitrile vibrational frequency of this molecule has distinct values in the presence of pure water (similar to 2232 cm(-1)) and pure IL (for example, similar to 2226 cm(-1) for ethylmethylimidazolium tetrafluoroborate, [EMIM][BF4]). This difference reflects the local electrostatic field and the hydrogen-bonding variations between these two limiting cases. We tracked this frequency shift as a function of IL concentration in water all the way from pure water to pure IL. We report two important findings. First, only one nitrile peak is observed for the entire concentration range, indicating that at least on the length scale of the probe molecule water and ILs do not phase separate within the interface, and no heterogeneously distinct electrostatic environments are formed. Second, and more importantly, we find that even up to a significant mole fraction of bulk water (x similar to 0.95), the nitrile frequency does not change from that indicative of a pure IL for [EMIM] [BF4], indicating preferential aggregation of the ions near the surface. Because this behavior is very similar to surfactants, we chose an imidazolium cation with a longer side chain which resulted in behavior expected from a surfactant, with a preferential layer of the ions on the surface even in dilute water solutions (x similar to 0.995). This observation indicates that even those ILs that are not nominally categorized as surfactants have a strong tendency to aggregate at the surface. Because ILs serve as electrolytes in a range of electrochemical reactions, including those requiring water, our results are likely useful for mechanistic understanding and tuning of such reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据