4.7 Article

A GM-CSF-neuroantigen tolerogenic vaccine elicits inefficient antigen recognition events below the CD40L triggering threshold to expand CD4+CD25+FOXP3+Tregs that inhibit experimental autoimmune encephalomyelitis (EAE)

期刊

JOURNAL OF NEUROINFLAMMATION
卷 17, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12974-020-01856-8

关键词

FOXP3(+)Tregs; Immune tolerance; Tolerogenic vaccine; EAE; MS; Neuroimmunology; GM-CSF; Neuroantigen

资金

  1. NIH [R01-NS072150, R01AI126398, S10-OD021615]
  2. Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Disease Research
  3. Brody Brothers Endowment Fund

向作者/读者索取更多资源

Background Tolerogenic vaccines represent antigen-specific interventions designed to re-establish self-tolerance and thereby alleviate autoimmune diseases, which collectively comprise over 100 chronic inflammatory diseases afflicting more than 20 million Americans. Tolerogenic vaccines comprised of single-chain GM-CSF-neuroantigen (GMCSF-NAg) fusion proteins were shown in previous studies to prevent and reverse disease in multiple rodent models of experimental autoimmune encephalomyelitis (EAE) by a mechanism contingent upon the function of CD4(+)CD25(+)FOXP3(+)regulatory T cells (Tregs). GMCSF-NAg vaccines inhibited EAE in both quiescent and inflammatory environments in association with low-efficiency T cell receptor (TCR) signaling events that elicited clonal expansion of immunosuppressive Tregs. Methods This study focused on two vaccines, including GMCSF-MOG (myelin oligodendrocyte glycoprotein 35-55/MOG(35-55)) and GMCSF-NFM (neurofilament medium peptide 13-37/NFM13-37), that engaged the transgenic 2D2 TCR with either low or high efficiencies, respectively. 2D2 mice were crossed with FOXP3 IRES eGFP (FIG) mice to track Tregs and further crossed withRag(-/-)mice to reduce pre-existing Treg populations. Results This study provided evidence that low and high efficiency TCR interactions were integrated via CD40L expression levels to control the Treg/Tcon balance. The high-efficiency GMCSF-NFM vaccine elicited memory Tcon responses in association with activation of the CD40L costimulatory system. Conversely, the low-efficiency GMCSF-MOG vaccine lacked adequate TCR signal strength to elicit CD40L expression and instead elicited Tregs by a mechanism that was impaired by a CD40 agonist. When combined, the low- and high-efficiency GMCSF-NAg vaccines resulted in a balanced outcome and elicited both Tregs and Tcon responses without the predominance of a dominant immunogenic Tcon response. Aside from Treg expansion in 2D2-FIG mice, GMCSF-MOG caused a sustained decrease in TCR-beta, CD3, and CD62L expression and a sustained increase in CD44 expression in Tcon subsets. Subcutaneous administration of GMCSF-MOG without adjuvants inhibited EAE in wildtype mice, which had a replete Treg repertoire, but was pathogenic rather than tolerogenic in 2D2-FIG-Rag1(-/-)mice, which lacked pre-existing Tregs. Conclusions This study provided evidence that the GMCSF-MOG vaccine elicited antigenic responses beneath the CD40L triggering threshold, which defined an antigenic niche that drove dominant expansion of tolerogenic myelin-specific Tregs that inhibited EAE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据