4.5 Article

Immune Suppression of Glia Maturation Factor Reverses Behavioral Impairment, Attenuates Amyloid Plaque Pathology and Neuroinflammation in an Alzheimer's Disease Mouse Model

期刊

JOURNAL OF NEUROIMMUNE PHARMACOLOGY
卷 16, 期 2, 页码 363-375

出版社

SPRINGER
DOI: 10.1007/s11481-020-09929-4

关键词

Alzheimer's disease; Amyloid pathology; Neuroinflammation; Anti-GMF antibody; Cognition

资金

  1. National Institutes of Health [AG048205]
  2. VA Research Career Scientist Award

向作者/读者索取更多资源

The study demonstrates that immune checkpoint blockade of GMF function with anti-GMF antibody can effectively reduce neuroinflammation and attenuate amyloid pathology in the cortex and hippocampal CA1 region of 5XFAD mouse brain. It also suggests that pharmacological immune neutralization of GMF could be a promising neuroprotective strategy for targeting neuroinflammation and neurodegeneration in Alzheimer's disease.
Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disorder recognized by accumulation of amyloid-plaques (APs) and neurofibrillary tangles (NFTs) and eventually loss of memory. Glia maturation factor (GMF), a neuroinflammatory protein first time isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. However, no studies have been reported on whether anti-GMF antibody administration could downregulate neuroinflammation and attenuate amyloid pathology in AD brain. We investigated the potential effect of single dose of (2 mg/kg b.wt/mouse) intravenously (iv) injected with anti-GMF antibodyon cognitive function, neuroprotection, neuroinflammation and A beta load in the brain of 9-month-old 5XFAD mice. Following 4 weeks of anti-GMF antibody delivery in mice, we found reduced expression of GMF, astrocytic glial fibrillary acidic protein (GFAP) and microglial ionizing calcium binding adaptor molecule 1 (Iba1) as well as improvement inneuroinflammatory response via inhibition of pro-inflammatory cytokines (TNF-alpha, IL-1 beta and IL-6) production and amyloid pathology in the cerebral cortex and hippocampal CA1 region of 5XFAD mice. Correspondingly, blockade of GMF function with anti-GMF antibody improved spatial learning, memory, and long-term recognition memory in 5XFAD mice. The present study demonstrates that the immune checkpoint blockade of GMF function with anti-GMF antibody coordinates anti-inflammatory effects to attenuate neurodegeneration in the cortex and hippocampal CA1 region of 5XFAD mouse brain. Further, our data suggest, that pharmacological immune neutralization of GMF is a promising neuroprotective strategy totherapeutically target neuroinflammation and neurodegeneration in AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据