4.2 Article

Enhanced Crystallinity and Antibacterial of PHBV Scaffolds Incorporated with Zinc Oxide

期刊

JOURNAL OF NANOMATERIALS
卷 2020, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2020/6014816

关键词

-

资金

  1. Natural Science Foundation of China [51935014, 51905553, 81871494, 81871498, 51705540]
  2. Hunan Provincial Natural Science Foundation of China [2019JJ50774, 2018JJ3671, 2019JJ50588]
  3. Provincial Key R&D Projects of Jiangxi [20201BBE51012]
  4. JiangXi Provincial Natural Science Foundation of China [20192ACB20005]
  5. Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2018)
  6. Project of Hunan Provincial Science and Technology Plan [2017RS3008]
  7. Shenzhen Science and Technology Plan Project [JCYJ20170817112445033]
  8. Innovation Team Project on University of Guangdong Province [2018GKCXTD001]
  9. Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020 [PT2020E002]

向作者/读者索取更多资源

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has a great potential in bone repair, but unfortunately, the poor mechanical properties limit its further application. In this work, zinc oxide (ZnO) nanoparticles were incorporated into PHBV porous scaffold fabricated by selective laser sintering technique. It was because ZnO nanoparticles could provide nucleating sites for the orderly stacking of polymer chains, thereby enhancing the crystallinity of PHBV. It was well known that the mechanical properties of PHBV scaffold could be enhanced with the increase of crystallinity. More significantly, the released Zn(2+)would combine negatively charged cell membranes of bacterial through electrostatic interaction and consequently destructed the protein structure and resulted in the death of bacterial, which was highly desired in reducing the risk of implant infection. Results indicated that the relative crystallinity of scaffold with 3 wt.% ZnO increased remarkably from 38% to 64% compared to pure PHBV scaffold, which effectively enhanced the compression strength and modulus by 56% and 51.5%, respectively. Moreover, the scaffold had a favorable antibacterial activity. Cell culture experiments proved that the scaffold could promote the cell behaviors. The positive results demonstrated the scaffold may serve as a potential replacement in bone repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据