4.7 Article

Understanding the binding between Rosmarinic acid and serum albumin: In vitro and in silico insight

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 311, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.113348

关键词

Human scrum albumin; Fluorescence spectroscopy; Molecular docking; Molecular dynamics simulation; Circular dichroism; Isothermal titration calorimetry

资金

  1. Deanship of Scientific Research at King Saud University, Riyadh, Kingdom of Saudi Arabia [RGP-215]

向作者/读者索取更多资源

Rosmarinic acid (RA) is a natural product that is increasingly being used in food industries and cosmetic industries. Drug pharmacokinetics is affected upon binding with protein, thus making drug-protein interactions imperative to study. The binding affinity between RA and serum albumin, human serum albumin (HSA) was investigated using multi spectroscopic approaches and in silico analysis. UV-vis, fluorescence, and circular dichroism (CD) spectroscopies were employed to elucidate the mode and the mechanism of HSA-RA interaction. Fluorescence studies showed excellent binding between HSA and RA with a binding constant (K) of 10(7) M-1. Fluorescence quenching experiments carried out at three different temperatures suggested that HSA-RA complex formation is guided by static quenching. The binding constants were found to decrease at higher temperatures suggesting the formation of the less stable complex at higher temperatures. Far UV-CD spectra revealed slight alterations in the secondary structure of HSA upon RA binding further validating complex formation between HSA and RA. Thermodynamic parameters obtained suggested hydrophobic interactions to play a dominant role in this interaction. Isothermal titration calorimetry (ITC) further validated the spontaneous and exothermic nature of this reaction. Molecular docking study shows that RA is binding with appreciable affinity showing specific interactions towards the binding pocket residues of HSA mimicking the binding pose of co-crystallized myristic acid. Molecular dynamics simulation study suggested that RA is stabilizing the HSA structure and leads to fewer conformational changes upon binding. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据