4.7 Article

Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 608, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2020.118172

关键词

Thin film composite; Nanofiltration; Disulfonated diamine monomer; High flux; Dye rejection

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [113Y350/113Y371]
  2. Istanbul University-Cerrahpasa Scientific Research Projects [52369]

向作者/读者索取更多资源

Novel nanofiltration (NF) membranes with improved flux, dye rejection, high pH and temperature resistance were developed using a disulfonated diamine co-monomer, disodium-3-3'-disulfone-4-4'-dichlorodiphenylsulfone (S-DADPS). Thin film composite (TFC) NF membranes were fabricated on a porous polysulfonebased ultrafiltration support layer via the interfacial polymerization between trimesoyl chloride (TMC) in the organic phase and S-DADPS/piperazine (PIP) mixture in the aqueous phase. The effect of S-DADPS content was investigated on the structure and properties of fabricated TFC-NF membranes by varying the ratio between SDADPS and PIP from 0/100 to 100/0 (w/w). The chemical structure, surface properties and the morphology of TFC-NF membranes were characterized by Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), optical profilometry, contact angle, and zeta potential measurements. Salt and dye rejection behaviors of fabricated TFC-NF membranes were evaluated using 2000 ppm MgSO4 and NaCl solutions and 100 ppm Setazol Red and Reactive Orange 16 dyes, respectively. Dyes were filtrated in acidic, neutral and alkaline conditions for pH resistance tests. The temperature resistance of membranes was evaluated using pure water and dye solutions at 15 degrees C, 25 degrees C, and 40 degrees C. Among all TFC-NF membranes fabricated by varying the S-DADPS/PIP ratio, the membrane with an 80/20 ratio of S-DADPS/PIP resulted in superior properties such as increased water flux without considerable salt and dye rejection loss compared to the neat TFC-NF membrane without S-DADPS. In addition, the variation of S-DADPS/PIP ratio was demonstrated as a powerful tool to tune the balance of flux, separation and rejection performance of NF membranes for custom purification purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据