4.6 Article

Binder-free high-performance Fe3O4fine particles in situ grown onto N-doped porous graphene layers co-embedded into porous substrate as supercapacitor electrode

向作者/读者索取更多资源

It has repeatedly been reported that low conductivity of iron oxide as a major challenge limited its supercapacitive application, where compositing Fe(3)O(4)with carbonaceous nanomaterial can be considered as excellent solution strategy. In this paper, we report Fe(3)O(4)nanoparticles electrochemically deposited on graphene oxide sheets as high-performance nanocomposite for energy storage applications. Iron oxide nanoparticles (Fe3O4) are cathodically decorated on N-doped porous graphene (N-PG) nanosheets. The prepared pristine and nanocomposite materials were characterized by FT-IR, Raman, XRD, BET, TEM, FE-SEM, EDS, as well as TGA/DSC techniques. The electrochemical properties of resulting Fe3O4/Ni foam and Fe3O4@N-PG/Ni foam electrodes were investigated through CV, GCD, and EIS techniques, and the obtained data showed that the fabricated hybrid electrode (i.e., Fe3O4@N-PG/Ni foam) is enable to present specific capacitance values s as high as 822 and 631 F g(-1)at the 0.5 and 10 A g(-1), respectively, where the pristine Fe3O4/Ni foam electrode showed 279 and 131 F g(-1)at the 0.5 and 10 A g(-1). Furthermore, the hybrid Fe3O4@N-PG/Ni foam electrode showed excellent cycling ability, good high rate, and higher energy density as compared with the Fe3O4/Ni foam electrode. These enhancements were assigned to the synergetic contributions between N-doped porous graphene sheets and iron oxide particles, which mainly results from the rational architecture of N-PG nanosheets and Fe(3)O(4)nanoparticles provided by the applied synthetic route.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据