4.7 Article

Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere

期刊

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2020.03.024

关键词

SAC305 solder; Marine atmosphere; Galvanic corrosion; In-situ EIS; Comb-like electrode

资金

  1. National Natural Science Foundation of China [51601057]

向作者/读者索取更多资源

Motivated by the increasing use of Sn-3.0Ag-0.5Cu (SAC305) solder in electronics worked in marine atmospheric environment and the uneven distribution of Ag3Sn and Cu6Sn5 intermetallic compounds (IMCs) in beta-Sn matrix, comb-like electrodes have been designed for in-situ EIS measurements to study the microstructure induced galvanic corrosion evolution of SAC305 solder in simulated marine atmosphere with high-temperature and high-humidity. Results indicate that in-situ EIS measurement by comb-like electrodes is an effective method for corrosion evolution behavior study of SAC305 solder. Besides, the galvanic effect between Ag3Sn IMCs and beta-Sn matrix can aggravate the corrosion of both as-received and furnace-cooled SAC305 solder as the exposure time proceeds in spite of the presence of corrosion product layer. Pitting corrosion can be preferentially found on furnace-cooled SAC305 with larger Ag3Sn grain size. Moreover, the generated inner stress during phases transformation process with Sn3O(OH)(2)Cl-2 as an intermediate and the possible hydrogen evolution at local acidified sites are supposed to be responsible for the loose, porous, cracked, and non-adherent corrosion product layer. These findings clearly demonstrate the corrosion acceleration behavior and mechanism of SAC305 solder, and provide potential guidelines on maintenance of microelectronic devices for safe operation and longer in-service duration. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据